Έχουμε σε ένα χαρτί τις κορυφές ενός κανονικού πολυγώνου και θέλουμε να τις ενώσουμε για να φτιάξουμε ένα αστέρι. Ο τρόπος κατασκευής του αστεριού είναι ο εξής: Ξεκινάμε από μία οποιαδήποτε κορυφή και την ενώνουμε με κάποια άλλη κορυφή, εκτός της διπλανής της, με φορά προς τα δεξιά. Στη συνέχεια την κορυφή που καταλήξαμε την ενώνουμε με την επόμενη κατάλληλη κορυφή προς τα δεξιά, φροντίζοντας πάντα ο αριθμός των κορυφών που βρίσκονται ανάμεσα στις δύο τελευταίες γραμμές που τραβήξαμε να είναι ο ίδιος. Στο τέλος πρέπει να καταλήξουμε στην αρχική μας κορυφή, έχοντας όμως ενώσει όλες τις κορυφές του πολυγώνου.
Έτσι προκύπτει ότι υπάρχει ένας τρόπος για να φτιάξουμε αστέρι εάν έχουμε 5 κορυφές, κανένας τρόπος για να φτιάξουμε αστέρι εάν έχουμε 6 κορυφές και 2 τρόποι για να φτιάξουμε αστέρι εάν έχουμε 7 κορυφές. Με πόσους τρόπους μπορούμε να φτιάξουμε αστέρι εάν έχουμε 2000 κορυφές;
Σωστή απάντηση έχουν δώσει οι:
james, stratos, Θανάσης Παπαδημητρίου, Nikos Stamatiou, Βαγγέλης, MrKitsos, batman1986, John Salt, Ανδρέας Καπερώνης, ΒΕΗΣ, kraptaki, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Png, swt, Michalis, saxon, kakkalos, G SOZELGI
Έτσι προκύπτει ότι υπάρχει ένας τρόπος για να φτιάξουμε αστέρι εάν έχουμε 5 κορυφές, κανένας τρόπος για να φτιάξουμε αστέρι εάν έχουμε 6 κορυφές και 2 τρόποι για να φτιάξουμε αστέρι εάν έχουμε 7 κορυφές. Με πόσους τρόπους μπορούμε να φτιάξουμε αστέρι εάν έχουμε 2000 κορυφές;
Σωστή απάντηση έχουν δώσει οι:
james, stratos, Θανάσης Παπαδημητρίου, Nikos Stamatiou, Βαγγέλης, MrKitsos, batman1986, John Salt, Ανδρέας Καπερώνης, ΒΕΗΣ, kraptaki, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Png, swt, Michalis, saxon, kakkalos, G SOZELGI