Ο διευθυντής ενός πειραματικού σχολείου επιλέγει 50 μαθητές και τους προκαλεί να κερδίσουν στο παρακάτω παιχνίδι: Βάζει τις ταυτότητές τους σε 50 θυρίδες, μία ταυτότητα ανά θυρίδα, με τυχαίο τρόπο. Ο ένας μετά τον άλλον, κάθε μαθητής μπορεί να ανοίξει μέχρι 25 θυρίδες με σκοπό να βρει την ταυτότητά του. Θα περάσουν τη δοκιμασία μόνο αν όλοι οι μαθητές βρουν την ταυτότητά τους.
Δεν μπορούν κατά τη διάρκεια του παιχνιδιού να αλλάξουν σειρά, ούτε να παρακολουθούν ενώ κάποιος άλλος ανοίγει θυρίδες και δεν επιτρέπεται να συνεννοούνται. Όταν κάποιος μαθητής βρίσκει την ταυτότητά του, όλες οι θυρίδες ξανακλείνουν χωρίς να πειραχτεί τίποτα. Σημάδια ή άλλα ίχνη ανοίγματος μιας θυρίδας ή σχετικά με το περιεχόμενό της, δεν υπάρχουν.
Ο διευθυντής έδωσε στους μαθητές το δικαίωμα να συσκεφθούν πριν αρχίσει η διαδικασία και να συζητήσουν τη στρατηγική τους. Μετά από πολύ συζήτηση, το πρόβλημα τους φαινόταν άλυτο. Τότε παρενέβη η καθαρίστρια του σχολείου, η οποία τους είπε πως το πρόβλημα έχει λύση αρκεί να της επιτρέψει ο διευθυντής να ανοίξει μια φορά όλες τις θυρίδες πριν αρχίσει το παιχνίδι και να αλλάξει τη θέση δύο ταυτοτήτων μεταξύ τους. Ο διευθυντής το δέχτηκε υπό την προϋπόθεση ότι η καθαρίστρια δεν θα δώσει καμία πληροφορία στους μαθητές.
Με ποια στρατηγική θα μπορέσουν οι μαθητές με τη βοήθεια της καθαρίστριας να κερδίσουν το παιχνίδι;
Σωστή απάντηση έχουν δώσει οι:
Michalis,
stratos, Θανάσης Παπαδημητρίου, sf,
batman1986, Βαγγέλης, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ,
Antonios Seretis,
swt, daskalos1971,
genikos, kraptaki,
MrKitsos, saxon