Στο Σχήμα 1 βλέπουμε μια επίπεδη επιφάνεια, χωρισμένη σε τμήματα. Το πρώτο τμήμα είναι τετράγωνο πλευράς $1\,εκ.$ Από το δεύτερο τμήμα και μετά, το κάθε νέο τμήμα έχει το διπλάσιο ύψος και το μισό πλάτος του προηγούμενου. Έτσι το εμβαδόν του κάθε τμήματος είναι πάντοτε $1\,εκ.^2$. Τα τμήματα αυτά είναι άπειρα σε πλήθος, οπότε το συνολικό τους εμβαδό είναι:
$E = 1\,εκ.^2 + 1\,εκ.^2 + 1\,εκ.^2 +\ldots$ , δηλαδή άπειρο.
Ένας μπογιατζής σκέφτεται πως αν ήθελε να βάψει αυτή την επιφάνεια θα χρειαζόταν άπειρη ποσότητα χρώματος.
Περιστρέφουμε τώρα την επιφάνεια γύρω από την ημιευθεία που βρίσκεται στο δεξιό σύνορο του Σχήματος 1 μέχρι να σχηματιστεί ένας πλήρης κύκλος. Προκύπτει έτσι το στερεό του Σχήματος 2 που αποτελείται από άπειρο πλήθος κυλίνδρων.
Ο όγκος ενός κυλίνδρου ακτίνας $r$ και ύψους $h$, δίνεται από τον τύπο: $V=πr^2h$.
O $ν\,$–οστός κύλινδρος του Σχήματος 2 μετρώντας από επάνω έχει ακτίνα $r=1/2^{ν-1}\,εκ.$ και ύψος $h=2^{ν-1}\,εκ.$ Άρα ο όγκος του $ν\,$–οστού κυλίνδρου είναι $V_ν=π/2^{ν-1}\,εκ.^3$.
Ο συνολικός όγκος του στερεού του σχήματος 2 είναι:
$$V=π\,(1+1/2+1/2^2+1/2^3+\ldots)\,εκ.^3$$ Μέσα στην παρένθεση του πιο πάνω τύπου έχουμε ένα γνωστό άθροισμα μιας γεωμετρική προόδου απείρων όρων, το οποίο συγκλίνει στην τιμή $2$. Άρα ο συνολικός όγκος του Σχήματος 2 είναι:
$$V=2π\,εκ.^3$$ Ας φανταστούμε τώρα ότι το στερεό του Σχήματος 2 είναι μέσα κούφιο, σχηματίζοντας ένα δοχείο. Για να το γεμίσει ο μπογιατζής θα χρειαζόταν χρώμα όγκου $2π\,εκ.^3$. Στη συνέχεια σκέφτεται πως εάν βουτούσε το επίπεδο του Σχήματος 1 μέσα στο δοχείο με το χρώμα, τότε θα το έβγαζε βαμμένο και μάλιστα και από τις δύο πλευρές.
Οδηγείται λοιπόν σε δύο αντιφατικά συμπεράσματα: το πρώτο είναι ότι το επίπεδο χρειάζεται άπειρη ποσότητα χρώματος για να βαφτεί και το δεύτερο είναι ότι αρκούν $6,28\,εκ.^3$ χρώματος περίπου. Σε ποιο σημείο του συλλογισμού του μπογιατζή βρίσκεται το λάθος;
Σωστή απάντηση έχουν δώσει οι:
RIZOPOULOS GEORGIOS, percival, ΕΑΛΕΞΙΟΥ, stratos, batman1986, Θανάσης Παπαδημητρίου, Σωτήρης, saxon, BOMBER, alexpsomi, sotrixios, nerd, Kensh1n, Michalis, sf, Kordas Antonis, swt, Νεφέλη, daskalos1971, Steli0s1, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, kraptaki
$E = 1\,εκ.^2 + 1\,εκ.^2 + 1\,εκ.^2 +\ldots$ , δηλαδή άπειρο.
Ένας μπογιατζής σκέφτεται πως αν ήθελε να βάψει αυτή την επιφάνεια θα χρειαζόταν άπειρη ποσότητα χρώματος.
Περιστρέφουμε τώρα την επιφάνεια γύρω από την ημιευθεία που βρίσκεται στο δεξιό σύνορο του Σχήματος 1 μέχρι να σχηματιστεί ένας πλήρης κύκλος. Προκύπτει έτσι το στερεό του Σχήματος 2 που αποτελείται από άπειρο πλήθος κυλίνδρων.
Ο όγκος ενός κυλίνδρου ακτίνας $r$ και ύψους $h$, δίνεται από τον τύπο: $V=πr^2h$.
O $ν\,$–οστός κύλινδρος του Σχήματος 2 μετρώντας από επάνω έχει ακτίνα $r=1/2^{ν-1}\,εκ.$ και ύψος $h=2^{ν-1}\,εκ.$ Άρα ο όγκος του $ν\,$–οστού κυλίνδρου είναι $V_ν=π/2^{ν-1}\,εκ.^3$.
Ο συνολικός όγκος του στερεού του σχήματος 2 είναι:
$$V=π\,(1+1/2+1/2^2+1/2^3+\ldots)\,εκ.^3$$ Μέσα στην παρένθεση του πιο πάνω τύπου έχουμε ένα γνωστό άθροισμα μιας γεωμετρική προόδου απείρων όρων, το οποίο συγκλίνει στην τιμή $2$. Άρα ο συνολικός όγκος του Σχήματος 2 είναι:
$$V=2π\,εκ.^3$$ Ας φανταστούμε τώρα ότι το στερεό του Σχήματος 2 είναι μέσα κούφιο, σχηματίζοντας ένα δοχείο. Για να το γεμίσει ο μπογιατζής θα χρειαζόταν χρώμα όγκου $2π\,εκ.^3$. Στη συνέχεια σκέφτεται πως εάν βουτούσε το επίπεδο του Σχήματος 1 μέσα στο δοχείο με το χρώμα, τότε θα το έβγαζε βαμμένο και μάλιστα και από τις δύο πλευρές.
Οδηγείται λοιπόν σε δύο αντιφατικά συμπεράσματα: το πρώτο είναι ότι το επίπεδο χρειάζεται άπειρη ποσότητα χρώματος για να βαφτεί και το δεύτερο είναι ότι αρκούν $6,28\,εκ.^3$ χρώματος περίπου. Σε ποιο σημείο του συλλογισμού του μπογιατζή βρίσκεται το λάθος;
Σωστή απάντηση έχουν δώσει οι:
RIZOPOULOS GEORGIOS, percival, ΕΑΛΕΞΙΟΥ, stratos, batman1986, Θανάσης Παπαδημητρίου, Σωτήρης, saxon, BOMBER, alexpsomi, sotrixios, nerd, Kensh1n, Michalis, sf, Kordas Antonis, swt, Νεφέλη, daskalos1971, Steli0s1, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, kraptaki