Μετρήστε την ευφυΐα σας!

Πόσο έξυπνοι είστε; Βρείτε την απάντηση σε αυτό το ερώτημα λύνοντας μερικούς από τους καλύτερους γρίφους αυτού του blog, συγκεντρωμένους σε μία εφαρμογή Android. Κατεβάστε την εφαρμογή από το Google Play Store.

Κυριακή 1 Ιουλίου 2018

Ανάλυσης - Λαβύρινθος εναλλάξ (***)

γρίφος λαβύρινθος εναλλάξ
Στον λαβύρινθο της εικόνας πρέπει να εισέλθουμε από το βέλος πριν τον κίτρινο κύκλο και να εξέλθουμε από το βέλος μετά τον πράσινο κύκλο. Μπορούμε να περάσουμε από τον κάθε κύκλο όσες φορές θέλουμε ή και καμία, αλλά πάντοτε πρέπει να περνάμε εναλλάξ τους κίτρινους και τους πράσινους κύκλους.
Είναι δυνατόν να ολοκληρωθεί η διαδρομή σύμφωνα με τους παραπάνω κανόνες; Αν ναι, πόσες είναι οι ελάχιστες φορές που θα χρειαστεί να περάσουμε από κάθε χρώμα και αν όχι, γιατί;

Σωστή απάντηση έχουν δώσει οι:
stratosbatman1986, John Salt, Θανάσης Παπαδημητρίου, Nikos Stamatiou, james, Άννα, saxon, swtΠοταμιτης, kraptaki, MrKitsos, Michalis, Maggie M, daskalos1971, sf, Γιώργος Βαβάτσης, Tamy, sakis kefallinosΒαγγέλης, mariosG, aris, ΑΜ, Png, kakkalos, G SOZELGI, Romanos,

Συνδυαστικής σκέψης - Άθροισμα 14 (****)

Ο δάσκαλος δίνει στην Αγγελική, στον Βαγγέλη και στη Γωγώ από ένα χαρτάκι που πάνω τους έχει γράψει έναν αριθμό, έτσι ώστε ο κάθε μαθητής να δει μόνο το δικό του χαρτάκι. Τους ανακοινώνει πως όλοι έχουν στο χαρτάκι τους έναν θετικό ακέραιο αριθμό και πως το άθροισμα των τριών αριθμών είναι το 14. Ο δάσκαλος ρωτάει τα παιδιά αν μπορούν να βγάλουν κάποιο συμπέρασμα για τους αριθμούς των υπολοίπων και τα παιδιά κάνουν τις ακόλουθες δηλώσεις:
Αγγελική: Ξέρω πως ο Βαγγέλης και η Γωγώ έχουν διαφορετικούς αριθμούς.
Βαγγέλης: Μετά από αυτό που είπε η Αγγελική, ξέρω πως όλοι μας έχουμε διαφορετικούς αριθμούς.
Γωγώ: Μετά από αυτό που είπε ο Βαγγέλης, ξέρω τι αριθμό έχει ο καθένας μας.
Ποιοι είναι οι αριθμοί των τριών παιδιών;

Σωστή απάντηση έχουν δώσει οι:
batman1986stratosΘανάσης Παπαδημητρίου, Nikos Stamatiou, Ποταμιτης, swtjames, kraptaki, MrKitsosAnastasios Mitsolidis, Michalis, King Ragnar, theo, sf, Tamy, John Salt, Βαγγέλης, ΒΕΗΣ, Png, Kordas Antonis, Maira, saxon, zatrikiosellinas109, G SOZELGI, kakkalos

Υπολογισμού - Κυλιόμενη σκάλα (****)

Ένας νεαρός έχει πάει στο εμπορικό κέντρο και διασκεδάζει με την κυλιόμενη σκάλα. Την ανέβηκε με σταθερή ταχύτητα αντίθετα στην κίνηση της και μέτρησε 48 σκαλοπάτια. Την κατέβηκε με την ίδια ταχύτητα και μέτρησε 24 σκαλοπάτια. Όταν το εμπορικό κέντρο έκλεισε, ο νεαρός αποφάσισε να ξανανέβει την ακίνητη πλέον σκάλα με τη μισή του ταχύτητα. Πόσα σκαλιά μέτρησε;

Σωστή απάντηση έχουν δώσει οι:
John Salt, stratosbatman1986Θανάσης Παπαδημητρίου, Nikos Stamatiou, theoMamma-mia, swt, kraptaki, MrKitsosharry_potter, Michalis,  Ψυρούκης-Τριχ'ωναςsotrixiosheron vesper, daskalos1971, παοκαρα, Ποταμιτης, sf, ANDREKAT, Ευαγγελία, Χρήστος Κάλλης, Βαγγέλης, Διας ΠΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, theoniPng, Romanoskakkalos, G SOZELGI, saxon, Kris Geo

Σάββατο 2 Ιουνίου 2018

Λογικής - Υπουργικές δηλώσεις (***)

Ο Υπουργός Οικονομικών μόλις ολοκλήρωσε τη συζήτησή του με τον Πρωθυπουργό, με θέματα ημερήσιας διάταξης την αύξηση ή τη μείωση μισθών, συντάξεων και φόρων. Αμέσως μετά τη συνάντησή τους τον περίμεναν απ' έξω δημοσιογράφοι που προσπάθησαν να του πάρουν κάποια δήλωση, οπότε ακολούθησε ο μεταξύ τους διάλογος:

Δημοσιογράφοι: Κύριε Υπουργέ, τι συζητήσατε με τον Πρωθυπουργό;
Υπουργός: Μας απασχόλησε το θέμα των συντάξεων.
Δημοσιογράφοι: Θα τις μειώσετε ξανά;;
Υπουργός: Τίποτα δεν θα μειώσουμε!
Δημοσιογράφοι: Άρα να περιμένουμε καλά νέα για τον λαό;
Υπουργός: Φυσικά και μάλιστα εξετάσαμε τα ενδεχόμενα είτε να μειωθούν οι συντάξεις είτε να αυξηθούν οι μισθοί, με πιθανότερο το δεύτερο σενάριο. Σας ευχαριστώ.

Οι δημοσιογράφοι έμειναν να αναρωτιούνται την ουσία των δηλώσεων του Υπουργού γιατί ήταν σε όλους γνωστό ότι μόνο μία δήλωσή του ήταν αληθής σε κάθε συνέντευξη που έδινε. Ένας ξύπνιος δημοσιογράφος κατάλαβε το νόημα των δηλώσεων του Υπουργού και έτρεξε στην εφημερίδα του για να προλάβει να μεταφέρει πρώτος τα καυτά νέα. Ποιο θα είναι το αυριανό πρωτοσέλιδο της εφημερίδας;

Σωστή απάντηση έχουν δώσει οι:
batman1986, dimchondro, stratosJohn Salt, daskalos1971, Θανάσης Παπαδημητρίου, Nikos Stamatiou, Ποταμιτης, kraptaki, swt, Michalis, sf, MrKitsosKing Ragnar, Steli0s1, Ρωμανός, saxon, billythekid

Έμπνευσης - Σακούλες με βόλους (***)

Ποιος είναι ο μέγιστος αριθμός από σακούλες που μπορούμε να χρησιμοποιήσουμε έτσι ώστε να βάλουμε μέσα τους 15 βόλους και κάθε σακούλα να περιέχει διαφορετικό αριθμό βόλων;

Σωστή απάντηση έχουν δώσει οι:
swtbatman1986sakis kefallinos, John Salt, YannisP, MrKitsosdimchondro, stratos, daskalos1971, Nikos Stamatiou, theoΘανάσης Παπαδημητρίου, Ran-tan-plan, kraptaki, Ποταμιτης, james, Michalis, Maggie MCheGuevara, sf, King Ragnar, AM, Png, Tamy, Antonios SeretisΒαγγέλης, sotrixiosΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, tasoe, Mania, saxon, G SOZELGI, Romanos, kakkalos, KiraDesu, ZatrikiosRokos, Χρήστος Κάλλης

Ανάλυσης - Παιχνίδι με 5 δοχεία (***)

Πέντε άδεια δοχεία ίσης χωρητικότητας βρίσκονται σε μια κυκλική διάταξη και δύο παίχτες, ο Α και ο Β, παίζουν ένα παιχνίδι σε διαδοχικούς γύρους. Πρώτος παίζει ο Α, που με μια κανάτα παίρνει 1 λίτρο νερό από μια βρύση και το μοιράζει όπως θέλει στα πέντε δοχεία. Ο Β με τη σειρά του επιλέγει δυο γειτονικά δοχεία, τα αδειάζει στο νεροχύτη και τα ξαναβάζει στην θέση τους. Το ίδιο γίνεται και σε κάθε επόμενο γύρο. Σκοπός του Α είναι να ξεχειλίσει σε κάποιον γύρο τουλάχιστον ένα από τα πέντε δοχεία, ενώ σκοπός του Β είναι να μην το επιτρέψει.
Ποια είναι η ελάχιστη χωρητικότητα των δοχείων για να έχει ο Β νικητήρια στρατηγική; Δώστε ένα παράδειγμα μιας τέτοιας στρατηγικής για τον Β με τη χωρητικότητα που βρήκατε και δώστε ένα παράδειγμα μιας στρατηγικής του Α που κερδίζει σε οποιαδήποτε μικρότερη χωρητικότητα από αυτή που βρήκατε.

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, dimchondro, YannisP, John Salt, daskalos1971, stratos, Nikos Stamatiou, batman1986kraptaki, swtMichalis, sf, MrKitsosΒαγγέλης, kakkalos, G SOZELGI, Kontoleon,

Τρίτη 1 Μαΐου 2018

Ανάλυσης - Ο λύκος και ο βοσκός (***)

γρίφος λύκος και βοσκός
Ο λύκος στο τετράγωνο ζ1 της εικόνας προσπαθεί να φτάσει τα πρόβατα της 8ης γραμμής και ο βοσκός στο τετράγωνο ε7 προσπαθεί να τον εμποδίσει. Ο λύκος και ο βοσκός κινούνται εναλλάξ και σε κάθε κίνησή τους μετακινούνται σε ένα από τα γειτονικά τους τετράγωνα, συμπεριλαμβανομένων και των διαγώνιων γειτονικών τετραγώνων. Ο βοσκός μπορεί να κινηθεί και στα τετράγωνα των προβάτων, δηλαδή από την αρχική του θέση μπορεί να κινηθεί σε 8 τετράγωνα. Τα πρόβατα δεν μετακινούνται. Αν ο λύκος πέσει πάνω στον βοσκό τον τρώει και στη συνέχεια φτάνει τα πρόβατα, ενώ αν ο βοσκός πέσει πάνω στον λύκο τον σκοτώνει και ησυχάζει. Πρώτος κινείται ο λύκος. Θα καταφέρει να φάει έστω και ένα πρόβατο ή μπορεί ο βοσκός με τις κατάλληλες κινήσεις να τον εμποδίσει; Δικαιολογήστε την απάντησή σας με κάποιες από τις καλύτερες κινήσεις και για τους δύο πάνω στο διάγραμμα, χρησιμοποιώντας τις συντεταγμένες που δίνονται.

Σωστή απάντηση έχουν δώσει οι:
batman1986skmmcjJohn Salt, MrKitsosstratoschristos_giam, Θανάσης Παπαδημητρίου, dimchondro, kraptaki, swt, daskalos1971, theo, Michalis, sf, Βαγγέλης, saxon, Kontoleon, G SOZELGI

Υπολογισμού - Ο πονηρός καλικάντζαρος (****)

Ένας καλικάντζαρος έχει ανακαλύψει ένα βαρέλι μπύρα στο υπόγειο μιας ταβέρνας. Πηγαίνει λοιπόν κάποιο βράδυ και πίνει 3 κούπες μπύρα από το βαρέλι. Για να μην τον υποψιαστεί ο ταβερνιάρης, στο τέλος γεμίζει πάλι το βαρέλι με 3 κούπες νερό.
Ευχαριστημένος με το σχέδιό του, το επόμενο βράδυ πίνει άλλες 3 κούπες, μόνο που τώρα οι κούπες που ήπιε δεν περιείχαν καθαρή μπύρα αλλά το μείγμα μπύρας με νερό που προέκυψε. Στο τέλος προσθέτει πάλι 3 κούπες νερό στο μείγμα. Το τρίτο βράδυ ξαναπίνει 3 κούπες από το μείγμα και τις αντικαθιστά πάλι με 3 κούπες νερό.
Την επόμενη μέρα, ο ταβερνιάρης, που είχε αρχίσει κάτι να υποψιάζεται, στέλνει για ανάλυση το περιεχόμενο του βαρελιού στον τοπικό αλχημιστή και προς έκπληξή του το αποτέλεσμα ήταν ότι το βαρέλι περιείχε ίση ποσότητα μπύρας και νερού.
Πόσες κούπες μπύρα περιείχε αρχικά το βαρέλι;

Σωστή απάντηση έχουν δώσει οι:
sf, ΑΜ, Nikos Stamatiou, kraptaki, MrKitsos, daskalos1971, skmmcjTamystratosΘανάσης Παπαδημητρίου, batman1986SotrixiosswtΠοταμιτης, lopΧρήστος Κάλλης, Michalis, John Salt, james, παοκαρα, King Ragnar, ANDREKAT, Βαγγέλης, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, loukastheoniPng, DyerRomanos, kakkalos, G SOZELGI, saxon, zatrikiosKris Geo

Πιθανοτήτων – Γεννημένος την 4η Ιουλίου (****)

Ο Ρον έχει γεννηθεί την 4η Ιουλίου και βρίσκεται σε μία σειρά κατάταξης νεοσύλλεκτων στρατιωτών που έχουν γεννηθεί επίσης Ιούλιο. Ο υπεύθυνος της υποδοχής χρειάζεται έναν στρατιώτη λιγότερο απ’ όσους έχουν παρουσιαστεί, γι αυτό τους ανακοινώνει πως ο πρώτος που θα βρεθεί να έχει γεννηθεί την ίδια ημέρα με κάποιον που έχει περάσει ήδη θα απαλλαγεί των στρατιωτικών του υποχρεώσεων. Σε ποια σειρά πρέπει να μπει ο Ρον στην ουρά για να μεγιστοποιήσει την πιθανότητά του να απαλλαγεί;

Σωστή απάντηση έχουν δώσει οι:
batman1986skmmcjchristos_giam, kraptaki, stratos, Nikos Stamatiou, MrKitsos, daskalos1971, Χρήστος Κάλλης, Θανάσης Παπαδημητρίου, swtharry_potter, Michalis, sf, John Salt, Sergjiosaxon, Βαγγέλης 

Κυριακή 1 Απριλίου 2018

Συνδυασμών - Ο έχων δύο χιτώνας (***)

Ο Παύλος, ο Πέτρος και ο Θωμάς, έχουν από 8 χιτώνες ο καθένας. Κάθε ημέρα, ένας μόνο από αυτούς δίνει τους μισούς χιτώνες του σε κάποιον άλλον. Μετά από λίγες μέρες είχαν στην κατοχή τους 15, 6 και 3 χιτώνες αντίστοιχα. Τότε ο Παύλος που κρατούσε σημειώσεις, έδειξε στους άλλους δύο όλες τις μεταφορές που είχαν πραγματοποιηθεί και ο Πέτρος συμφώνησε μαζί του. Ο Θωμάς που δεν πειθόταν τόσο εύκολα, ισχυρίστηκε πως είχαν κάνει κάποιο λάθος στις μεταφορές. Ποιος έχει δίκιο;

Σωστή απάντηση έχουν δώσει οι:
batman1986stratosJohn Salt, swtSteli0s1, MrKitsos, Θανάσης Παπαδημητρίου, harry_potter, theoAntonios Seretis, ΑΜ, Nikos Stamatiou, kraptaki, Χρήστος Κάλλης, skmmcjTamy, Png, daskalos1971, harry_potter, james, sf, Michalis, King Ragnar, Βαγγέλης, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, kakkalos, G SOZELGI, saxon, planodios