Μετρήστε την ευφυΐα σας!

Πόσο έξυπνοι είστε; Βρείτε την απάντηση σε αυτό το ερώτημα λύνοντας μερικούς από τους καλύτερους γρίφους αυτού του blog, συγκεντρωμένους σε μία εφαρμογή Android. Κατεβάστε την εφαρμογή από το Google Play Store.

Κυριακή 4 Νοεμβρίου 2018

Πιθανοτήτων - Ζυγό ζάρι (****)

Έριξα ένα κοινό εξάεδρο ζάρι μέχρι να φέρει 6. Πόσες φορές κατά μέσο όρο εκτιμάτε ότι χρειάστηκε να το ρίξω, αν σας πω ότι όλες οι ρίψεις μου έφεραν ζυγό νούμερο;

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, stratosMrKitsosbatman1986, John Salt, daskalos1971, Ποταμιτης, kraptaki, sf, Michalis, Χρήστος Κάλλης, saxon

Σάββατο 6 Οκτωβρίου 2018

Έμπνευσης - Χωρίστε τα γουρουνάκια (***)

γρίφος Χωρίστε τα γουρουνάκια
Τα 9 γουρουνάκια της εικόνας είναι περιφραγμένα με έναν τετράγωνο φράχτη. Δημιουργήστε άλλους 2 τετράγωνους φράχτες έτσι ώστε κανένα γουρουνάκι να μην μπορεί να συναντηθεί με κανένα άλλο.

Σωστή απάντηση έχουν δώσει οι:
John Salt, batman1986swtstratos, kraptaki, MrKitsosRan-tan-plan, Nikos Stamatiou, Χρήστος Κάλλης, Tamy, Θανάσης Παπαδημητρίου, daskalos1971, Fauxτις, lakostas, King Ragnar, sakis kefallinosΑχιλλέας Σjames, Βαγγέλης, kakkalos, Peter Vettas, sf, sotrixios, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Shiro_, Michalis, Γιώργος ΒαβάτσηςMnKpRsΒΕΗΣ, Png, loukasaris, QuestionOfHeaven, G SOZELGI, Romanos, KiraDesu, TheBiologicalRiddlesaxon, Petros VettasZatrikiostasoe, kotsa Riko, ellinas109, Στράτης ΠερουτσέαςANDREKAT, Rokos

Συνδυαστικής σκέψης - Δύο αριθμοί από το 1 έως το 10 (***)

Ο γνωστός καθηγητής σκέφτεται δύο θετικούς ακέραιους αριθμούς από το 1 έως το 10, διαφορετικούς μεταξύ τους και λέει στον Αντώνη το άθροισμά τους, στον Γιώργο το γινόμενό τους και στον Δημήτρη την απόλυτη διαφορά τους. Ακολουθεί ο παρακάτω διάλογος μεταξύ των παιδιών:

Γιώργος: Δεν μπορώ να βρω τους αριθμούς.
Δημήτρης: Ούτε εγώ.
Αντώνης: Ούτε εγώ.
Γιώργος. Εξακολουθώ να μη μπορώ να βρω τους αριθμούς.
Αντώνης: Και εγώ εξακολουθώ να μη μπορώ.
Δημήτρης. Με αυτό που είπε ο Αντώνης, βρήκα τους αριθμούς.

Ποιοι είναι οι δύο αριθμοί;

Σωστή απάντηση έχουν δώσει οι:
stratosbatman1986BabisFlu, CheGuevara, Nikos Stamatiou, kraptaki, Tamy, Θανάσης Παπαδημητρίου, John Salt, MrKitsos, daskalos1971, AM, Png, King Ragnar, james, sf, DyerΒαγγέλης, Shiiro_, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Ποταμιτης, Michalis, swtJohnnyLk, GiannisL, saxon, Romanos, kakkalos, G SOZELGI, Zatrikios,

Ανάλυσης – Πλέγμα 7x7 (****)

γρίφος Πλέγμα 7x7
Θέλουμε να γεμίσουμε το πλέγμα των 49 τετραγώνων με τα δύο είδη πλακιδίων που φαίνονται στην εικόνα. Το κάθε πλακίδιο μπορεί να χρησιμοποιηθεί πολλές φορές και μπορεί να περιστραφεί ή να αναποδογυριστεί εάν χρειάζεται, δεν επιτρέπεται όμως να βγαίνει εκτός του πλέγματος, ούτε να επικαλύπτονται τα πλακίδια.
Είναι δυνατόν να καταφέρουμε το ζητούμενο; Αν ναι, ποιος είναι ο ελάχιστος αριθμός πλακιδίων που μπορούμε να χρησιμοποιήσουμε; Αν όχι, γιατί;

Σωστή απάντηση έχουν δώσει οι:
batman1986, Tamy, Θανάσης Παπαδημητρίου, daskalos1971, kraptaki, John Salt, stratos, sf, Βαγγέλης, Michalis, MrKitsosKordas Antonis, M,Pant., saxon, Png

Σάββατο 1 Σεπτεμβρίου 2018

Λογικής - Διασημότητα (***)

Μεταξύ 10 καλεσμένων σε μία εκδήλωση υπάρχει ένας διάσημος. Τον διάσημο τον ξέρουν όλοι ενώ ο ίδιος δεν ξέρει κανέναν. Οι υπόλοιποι 9 καλεσμένοι μπορεί να γνωρίζουν κάποιον άλλον ή μπορεί και όχι.
Εσείς που δεν ανήκετε στους καλεσμένους και είστε ο μόνος που δεν γνωρίζει τον διάσημο, ρωτάτε κάποιον καλεσμένο Α αν γνωρίζει κάποιον άλλον καλεσμένο Β και εκείνος απαντάει ναι ή όχι. Πόσες το πολύ ερωτήσεις αυτής της μορφής θα χρειαστείτε για να ανακαλύψετε τον διάσημο;
Σημείωση: Οι σχέσεις γνωριμίας δεν είναι αμφίδρομες, δηλαδή αν ο Α γνωρίζει τον Β, αυτό δεν σημαίνει αναγκαστικά ότι και ο Β γνωρίζει τον Α.

Σωστή απάντηση έχουν δώσει οι:
stratosbatman1986MrKitsos, Θανάσης Παπαδημητρίου, King Ragnar, Nikos Stamatiou, John Salt, kraptaki, swtdaskalos1971, lakostas, Ποταμιτης, Antonios Seretis, sf, Βαγγέλης, Steli0s1, Michalis, michalis-007, Ευθύμιος, saxon, Στράτης ΠερουτσέαςΧΡΗΣΤΟΣ Κ, G SOZELGI

Υπολογισμού - Σύνοδος πλανητών (****)

Τρεις πλανήτες περιφέρονται γύρω από ένα αστέρι στο ίδιο επίπεδο, με την ίδια φορά και σταθερές ταχύτητες. Οι περίοδοι περιφοράς τους είναι 60, 84 και 140 χρόνια. Αν σήμερα οι θέσεις των πλανητών και του αστεριού βρίσκονται πάνω στην ίδια νοητή ευθεία, μετά από πόσα χρόνια θα ευθυγραμμιστούν ξανά;

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, Ποταμιτης, stratosbatman1986, kraptaki, John Salt, MrKitsosDyerNikos Stamatiou, daskalos1971, swtK29, Png, ANDREKAT, sf, Μπάμπης, Χρήστος Κάλλης, james, TamysotrixiosΒαγγέλης, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Michalis, loukas, kakkalos, G SOZELGI, saxon, AG1, Kris Geo

Ζυγίσεων - Πέντε βόλοι (****)

Έχουμε 5 βόλους διαφορετικών βαρών μεταξύ τους και μία ζυγαριά δύο δίσκων. Πόσες το πολύ ζυγίσεις θα χρειαστεί να κάνουμε, αν χρησιμοποιήσουμε τη ζυγαριά με τον πιο αποτελεσματικό τρόπο, ώστε να κατατάξουμε και τους 5 βόλους από τον ελαφρύτερο προς τον βαρύτερο; Περιγράψτε τη μέθοδο που πρέπει να ακολουθήσουμε.

Σωστή απάντηση έχουν δώσει οι:
daskalos1971, stratosbatman1986BabisFlu, Θανάσης Παπαδημητρίου, swtJohn Salt, ΒΕΗΣ, kraptaki, Png, sf, Βαγγέλης, Michalis, saxon

Σάββατο 4 Αυγούστου 2018

Ανάλυσης - Παγάκι από λάδι (***)

Ρίχνουμε ένα κομμάτι παγωμένου λαδιού μέσα σε ένα ποτήρι με νερό. Περιμένουμε να ισορροπήσει και σημειώνουμε το ύψος της στάθμης του νερού. Όταν λιώσει το παγωμένο λάδι, η στάθμη του νερού θα μειωθεί, θα παραμείνει ίδια, ή θα αυξηθεί σε σχέση με πριν και γιατί;

Σωστή απάντηση έχουν δώσει οι:
John Salt, Maggie Mbatman1986james, stratosΜαρια-Χριστινα Κυπραιου, kraptaki, Θανάσης Παπαδημητρίου, MrKitsossotrixiosswt, Nikos Stamatiou, daskalos1971, King Ragnar, ΒΕΗΣ, ΑΜ, Γιώργος ΒαβάτσηςPng, Petros18, sf, Antonios Seretisharry_potter, Βαγγέλης, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Michalis, saxon, Romanos, G SOZELGI, kakkalos, TheBiologicalRiddle,

Συνδυασμών – Ιδιαίτερος εννιαψήφιος (***)

Βρείτε έναν εννιαψήφιο αριθμό του οποίου τα ψηφία είναι οι αριθμοί από 1 έως 9 από μία φορά ο καθένας και ο οποίος έχει την εξής ιδιότητα: Ο αριθμός πρέπει να διαιρείται ακριβώς με το 9. Αν εξαιρέσουμε το ψηφίο των μονάδων του τότε ο οκταψήφιος αριθμός που μένει πρέπει να διαιρείται ακριβώς με το 8. Αν εξαιρέσουμε το ψηφίο των μονάδων του νέου αριθμού τότε ο επταψήφιος αριθμός που μένει πρέπει να διαιρείται ακριβώς με το 7. Αυτό το μοτίβο πρέπει να ισχύει μέχρι να μείνει ένα ψηφίο στον αριθμό, το οποίο και θα διαιρείται με το 1.

Σωστή απάντηση έχουν δώσει οι:
sf, kraptaki, stratosMaggie MJohn Salt, james, Θανάσης Παπαδημητρίου, MrKitsosbatman1986swt, Nikos Stamatiou, TamyAM, daskalos1971, ΒΕΗΣ, Png, Ευαγγελία, Χρήστος Κάλλης, Βαγγέλης, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Michalis, saxon, kakkalos, Kordas Antonis, G SOZELGI, Kontoleon,

Έμπνευσης - Παράξενη ισότητα (****)

Πώς γίνεται να ισχύει η ισότητα 72+96=120;

Σωστή απάντηση έχουν δώσει οι:
batman1986MrKitsosΘανάσης Παπαδημητρίου, swtCheGuevara, kraptaki, stratosTamyNikos Stamatiou, daskalos1971, King Ragnar, sf, John Salt, sakis kefallinosDyerΒαγγέλης, ΘΩΜΑΣ ΘΩΜΑΙΔΗΣ, Michalis, RomanosKiraDesu, Kordas Antonis, saxon, kakkalos, G SOZELGI