Γίνε μέλος στο grifoi.org

Στους γρίφους με τη σήμανση ".Άλυτοι 1-100" μπορούν να στέλνουν τις λύσεις τους μόνο τα Μέλη του site grifoi.org. Πληροφορίες για το πως θα γίνετε μέλος μπορείτε να διαβάσετε εδώ.

Σάββατο, 3 Ιανουαρίου 2015

Λογικής - Ο σάκος του Αϊ-Βασίλη (***)

Στο σάκο του Αϊ-Βασίλη υπάρχουν 2015 δώρα, από τα οποία τα 1008 έχουν πράσινο περιτύλιγμα και τα 1007 κόκκινο περιτύλιγμα. Ο Αϊ-Βασίλης μοιράζει τα δώρα στα παιδιά ως εξής: Κάθε παιδί τραβάει στην τύχη από το σάκο 2 δώρα και α) αν είναι και τα δύο κόκκινα, ξαναβάζει το ένα στο σάκο και κρατάει το άλλο, β) αν είναι το ένα πράσινο και το άλλο κόκκινο, ξαναβάζει το πράσινο στο σάκο και κρατάει το κόκκινο, γ) αν είναι και τα δυο πράσινα, τα κρατάει και τα δύο και ο Αϊ-Βασίλης προσθέτει έναν ακόμη κόκκινο δώρο στο σάκο (από κάποιο εφεδρικό στοκ). Η διαδικασία αυτή επαναλαμβάνεται μέχρις ότου στο σάκο του Αϊ-Βασίλη απομείνει ένα μόνο δώρο. Ποια είναι η πιθανότητα αυτό να έχει κόκκινο περιτύλιγμα;

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, sf, stratos, batman1986, theo, Orestis Kopsacheilis,

Ανάλυσης - Ταυτότητες και θυρίδες (****)

Ο διευθυντής ενός πειραματικού σχολείου επιλέγει 50 μαθητές και τους προκαλεί να κερδίσουν στο παρακάτω παιχνίδι: Βάζει τις ταυτότητές τους σε 50 θυρίδες, μία ταυτότητα ανά θυρίδα, με τυχαίο τρόπο. Ο ένας μετά τον άλλον, κάθε μαθητής μπορεί να ανοίξει μέχρι 25 θυρίδες με σκοπό να βρει την ταυτότητά του. Θα περάσουν τη δοκιμασία μόνο αν όλοι οι μαθητές βρουν την ταυτότητά τους.
Δεν μπορούν κατά τη διάρκεια του παιχνιδιού να αλλάξουν σειρά, ούτε να παρακολουθούν ενώ κάποιος άλλος ανοίγει θυρίδες και δεν επιτρέπεται να συνεννοούνται. Όταν κάποιος μαθητής βρίσκει την ταυτότητά του, όλες οι θυρίδες ξανακλείνουν χωρίς να πειραχτεί τίποτα. Σημάδια ή άλλα ίχνη ανοίγματος μιας θυρίδας ή σχετικά με το περιεχόμενό της, δεν υπάρχουν.
Ο διευθυντής έδωσε στους μαθητές το δικαίωμα να συσκεφθούν πριν αρχίσει η διαδικασία και να συζητήσουν τη στρατηγική τους. Μετά από πολύ συζήτηση, το πρόβλημα τους φαινόταν άλυτο. Τότε παρενέβη η καθαρίστρια του σχολείου, η οποία τους είπε πως το πρόβλημα έχει λύση αρκεί να της επιτρέψει ο διευθυντής  να ανοίξει μια φορά όλες τις θυρίδες πριν αρχίσει το παιχνίδι και να αλλάξει τη θέση δύο ταυτοτήτων μεταξύ τους. Ο διευθυντής το δέχτηκε υπό την προϋπόθεση ότι η καθαρίστρια δεν θα δώσει καμία πληροφορία στους μαθητές.
Με ποια στρατηγική θα μπορέσουν οι μαθητές με τη βοήθεια της καθαρίστριας να κερδίσουν το παιχνίδι;

Σωστή απάντηση έχουν δώσει οι:
Michalis, stratos, Θανάσης Παπαδημητρίου, sf, batman1986, Βαγγέλης

Υπολογισμού - Παράταξη μυρμηγκιών (**)

25 μυρμήγκια βρίσκονται σε 5 διαδοχικούς θαλάμους της φωλιάς τους, με διάταξη 5 μυρμηγκιών σε κάθε θάλαμο. Στόχος τους είναι να απλωθούν έτσι ώστε να βρίσκεται ένα μυρμήγκι σε κάθε θάλαμο. Υπάρχουν αρκετοί θάλαμοι τόσο αριστερά όσο και δεξιά αυτών που βρίσκονται ήδη. Χρειάζεται ένα λεπτό για να μετακινηθεί ένα μυρμήγκι στον διπλανό θάλαμο και κάθε λεπτό μετακινείται μόνο ένα μυρμήγκι. Πόση ώρα χρειάζονται για να επιτύχουν το στόχο τους;

Δευτέρα, 1 Δεκεμβρίου 2014

Παράδοξα - Όλοι οι κύκλοι έχουν ίσες περιφέρειες (*)

γρίφος παράδοξο κύκλων
Στο σχήμα φαίνεται ένας δίσκος που έχει πάνω του χαραγμένους δύο κύκλους και απεικονίζεται στην αρχική και στην τελική του θέση μετά από μια πλήρη κύλισή του. Το σημείο Α του εξωτερικού κύκλου καταλήγει στο σημείο Β και το σημείο Γ του εσωτερικού κύκλου καταλήγει στο σημείο Δ. Αφού η περιστροφή είναι πλήρης, η απόσταση ΑΒ ισούται με την περιφέρεια του μεγάλου κύκλου και η απόσταση ΓΔ ισούται με την περιφέρεια του μικρού κύκλου. Όμως οι αποστάσεις ΑΒ και ΓΔ είναι προφανώς ίσες, οπότε οι δύο κύκλοι έχουν ίσες περιφέρειες.

Ανάλυσης - Μάντεψε τις μπάλες (***)

10 μπάλες είναι παραταγμένες σε μία σειρά μπροστά σε δύο παίκτες, οι οποίοι παίζουν το ακόλουθο παιχνίδι: Ο παίκτης Α βάζει στο μυαλό του δυο γειτονικές μπάλες. Ο παίκτης Β ορίζει δύο υποσύνολα των 10 μπαλών και τα αναφέρει στον Α. Ο παίκτης Α λέει στον Β πόσες από τις μπάλες που έβαλε στο μυαλό του περιέχονται σε κάθε υποσύνολο (π.χ. του λέει πως περιέχονται 2 μπάλες στο πρώτο και καμία μπάλα στο δεύτερο υποσύνολο). Τότε ο παίκτης Β, χωρίς να κάνει δεύτερη προσπάθεια, πρέπει να μαντέψει τις μπάλες που έβαλε στο μυαλό του ο Α.
Μπορεί ο παίκτης Β να κερδίζει πάντοτε το παιχνίδι; Αν ναι, πώς;

Σωστή απάντηση έχουν δώσει οι:
Orestis Kopsacheilis, Θανάσης Παπαδημητρίου, stratos, batman1986, theo, sf, MrKitsos, Antonios Seretis, Christos Ch,

Πιθανοτήτων - Τετράεδρο μέσα σε σφαίρα (****)

Αν πάρουμε 4 τυχαία σημεία πάνω στην επιφάνεια μιας σφαίρας, ποια είναι η πιθανότητα το τετράεδρο που έχει για κορυφές αυτά τα 4 σημεία να περιέχει στο εσωτερικό του το κέντρο της σφαίρας;

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, stratos, ΦΩΤΗΣΔΕΛ, sf

Σάββατο, 1 Νοεμβρίου 2014

Υπολογισμού - Πρωτοφανείς αριθμοί (****)

Ονομάζουμε έναν φυσικό αριθμό "πρωτοφανή" αν είναι σύνθετος, αλλά όχι πολλαπλάσιος του 2 ή του 3 ή του 5. Πόσοι πρωτοφανείς είναι μικρότεροι του 10.000;
Σημείωση: Υπάρχουν 1229 πρώτοι αριθμοί μέχρι το 10.000.

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, RIZOPOULOS GEORGIOS, stratos, sf, Antonios Seretis, theo, Κ29, Νίκος Ηλιόπουλος, swt, Png, MrKitsos,

Ανάλυσης - Τεμαχισμός της σκακιέρας (***)

Έχουμε μια σκακιέρα 8x8 ζωγραφισμένη σε ένα φύλλο χαρτί. Ένα τυχαίο τετράγωνό της είναι χρωματισμένο κόκκινο ενώ όλα τα υπόλοιπα είναι λευκά. Θέλουμε να κόψουμε τη σκακιέρα σε τμήματα έτσι ώστε να μπορούμε να φτιάξουμε μια νέα σκακιέρα 8x8 από τα κομμάτια της αρχικής και επιπλέον να μπορούμε να τοποθετήσουμε το κόκκινο τετράγωνο σε οποιαδήποτε από τις 64 θέσεις της νέας σκακιέρας.
Ποιος είναι ο ελάχιστος αριθμός τμημάτων που χρειαζόμαστε για να επιτύχουμε το ζητούμενο και τι σχήμα πρέπει να έχουν;

Σωστή απάντηση έχουν δώσει οι:
swt, RIZOPOULOS GEORGIOS, Θανάσης Παπαδημητρίου, sf, batman1986, stratos, takis, Antonios Seretis, theo, Νίκος Ηλιόπουλος, MrKitsos,

Λογικής - Αστρονόμοι (**)

Στον γαλαξία Sombrero υπάρχουν Ν πλανήτες που φιλοξενούν νοήμονα ζωή. Κάθε πλανήτης έχει πάνω του έναν αστρονόμο που παρατηρεί τον πλησιέστερο σε αυτόν πλανήτη. Όλες οι αποστάσεις μεταξύ των πλανητών είναι διαφορετικές. Να αποδειχτεί πως αν το Ν είναι περιττό τότε υπάρχει κάποιος πλανήτης που δεν τον παρατηρεί κανένας αστρονόμος.

Σάββατο, 4 Οκτωβρίου 2014

Ζυγίσεων - 8 κέρματα (****)

Έχουμε 8 κέρματα από τα οποία τα δύο είναι κάλπικα. Το ένα είναι ελαφρύτερο από ένα γνήσιο, το άλλο βαρύτερο. Έχουμε και μία ζυγαριά δύο δίσκων. Πώς θα διαπιστώσουμε με 3 ζυγίσεις εάν το βάρος των δύο κάλπικων κερμάτων είναι μεγαλύτερο, ίσο, ή μικρότερο από το βάρος δύο γνήσιων;

Σωστή απάντηση έχουν δώσει οι:
stratos, Θανάσης Παπαδημητρίου, sf, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, ioannesx, batman1986,