Γίνε μέλος στο grifoi.org

Στους γρίφους με τη σήμανση ".Άλυτοι 1-100" μπορούν να στέλνουν τις λύσεις τους μόνο τα Μέλη του site grifoi.org. Πληροφορίες για το πως θα γίνετε μέλος μπορείτε να διαβάσετε εδώ.

Σάββατο, 1 Νοεμβρίου 2014

Υπολογισμού - Πρωτοφανείς αριθμοί (****)

Ονομάζουμε έναν φυσικό αριθμό "πρωτοφανή" αν είναι σύνθετος, αλλά όχι πολλαπλάσιος του 2 ή του 3 ή του 5. Πόσοι πρωτοφανείς είναι μικρότεροι του 10.000;
Σημείωση: Υπάρχουν 1229 πρώτοι αριθμοί μέχρι το 10.000.

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, RIZOPOULOS GEORGIOS, stratos, sf, Antonios Seretis, theo, Κ29, Νίκος Ηλιόπουλος, swt, Png

Ανάλυσης - Τεμαχισμός της σκακιέρας (***)

Έχουμε μια σκακιέρα 8x8 ζωγραφισμένη σε ένα φύλλο χαρτί. Ένα τυχαίο τετράγωνό της είναι χρωματισμένο κόκκινο ενώ όλα τα υπόλοιπα είναι λευκά. Θέλουμε να κόψουμε τη σκακιέρα σε τμήματα έτσι ώστε να μπορούμε να φτιάξουμε μια νέα σκακιέρα 8x8 από τα κομμάτια της αρχικής και επιπλέον να μπορούμε να τοποθετήσουμε το κόκκινο τετράγωνο σε οποιαδήποτε από τις 64 θέσεις της νέας σκακιέρας.
Ποιος είναι ο ελάχιστος αριθμός τμημάτων που χρειαζόμαστε για να επιτύχουμε το ζητούμενο και τι σχήμα πρέπει να έχουν;

Σωστή απάντηση έχουν δώσει οι:
swt, RIZOPOULOS GEORGIOS, Θανάσης Παπαδημητρίου, sf, batman1986, stratos, takis, Antonios Seretis, theo, Νίκος Ηλιόπουλος

Λογικής - Αστρονόμοι (**)

Στον γαλαξία Sombrero υπάρχουν Ν πλανήτες που φιλοξενούν νοήμονα ζωή. Κάθε πλανήτης έχει πάνω του έναν αστρονόμο που παρατηρεί τον πλησιέστερο σε αυτόν πλανήτη. Όλες οι αποστάσεις μεταξύ των πλανητών είναι διαφορετικές. Να αποδειχτεί πως αν το Ν είναι περιττό τότε υπάρχει κάποιος πλανήτης που δεν τον παρατηρεί κανένας αστρονόμος.

Σάββατο, 4 Οκτωβρίου 2014

Ζυγίσεων - 8 κέρματα (****)

Έχουμε 8 κέρματα από τα οποία τα δύο είναι κάλπικα. Το ένα είναι ελαφρύτερο από ένα γνήσιο, το άλλο βαρύτερο. Έχουμε και μία ζυγαριά δύο δίσκων. Πώς θα διαπιστώσουμε με 3 ζυγίσεις εάν το βάρος των δύο κάλπικων κερμάτων είναι μεγαλύτερο, ίσο, ή μικρότερο από το βάρος δύο γνήσιων;

Σωστή απάντηση έχουν δώσει οι:
stratos, Θανάσης Παπαδημητρίου, sf, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, ioannesx

Ανάλυσης - Μαδώντας τη μαργαρίτα (***)

Ο Θωμάς για να αποδείξει την αγάπη του στην Ελένη, της έφερε μία μαργαρίτα με 55 πέταλα. Της είπε πως αρχίζοντας από αυτόν, θα μαδάνε εναλλάξ την μαργαρίτα και ο καθένας θα της αφαιρεί ένα ή δύο πέταλα, από όποιο σημείο επιθυμεί, αλλά αν επιλέξει δύο θα πρέπει να είναι διαδοχικά (κολλητά) μεταξύ τους. Σε κάθε κίνησή του ο Θωμάς θα λέει στην Ελένη: «σ’ αγαπώ!». Σε κάθε κίνησή της η Ελένη θα του λέει: «δεν μ’ αγαπάς!». Όποιος κόψει το τελευταίο πέταλο κερδίζει το παιχνίδι. Θα μπορέσει ο Θωμάς να αποδείξει την αγάπη του στην Ελένη ή μήπως η Ελένη θα έχει τον τελευταίο λόγο; Ποια είναι η νικηφόρα στρατηγική;

Σωστή απάντηση έχουν δώσει οι:
stratos, Θανάσης Παπαδημητρίου, batman1986, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, Νίκος Ηλιόπουλος, Λαέρτης, swt, sf, Antonios Seretis,

Υπολογισμού - Το σκαθάρι και η φωλιά του (***)

Ένα σκαθάρι ξεκινάει να κινείται κατά 1 μέτρο Ανατολικά, μετά 0,5 μέτρα Βόρεια, μετά 0,25 μέτρα Δυτικά, μετά 0,125 μέτρα Νότια και συνεχίζει την περίοδο κίνησης (Α-Β-Δ-Ν) μειώνοντας κάθε φορά την απόσταση που καλύπτει στο μισό της προηγούμενης. Στο τέλος της διαδρομής του ανακαλύπτει έναν μικρό σβόλο χώματος. Ποια ήταν η απόσταση του σβόλου από το σημείο εκκίνησης του σκαθαριού;

Συνδυασμών - Χωρίς τετράγωνο (****)

Στο παρακάτω σχήμα παρουσιάζεται ένα τετραγωνικό πλέγμα 4x4 φτιαγμένο από σπίρτα. Ποιος είναι ο ελάχιστος αριθμός σπίρτων που πρέπει να αφαιρέσουμε έτσι ώστε να μην υπάρχει πια κανένα τετράγωνο, μικρό ή μεγάλο;

γρίφος χωρίς τετράγωνο

Σάββατο, 6 Σεπτεμβρίου 2014

Λογικής - Παραγγελία (***)

Έξι φίλοι κάθονται σε μία καφετέρια. Έρχεται το γκαρσόνι, αλλά αντί να ρωτήσει ξεχωριστά τον καθένα τι θα παραγγείλει, τους κάνει τη γενική ερώτηση: «θα πιείτε όλοι καφέ;»
Οι 6 φίλοι απάντησαν με τη σειρά, ο καθένας τους με μία από τις φράσεις «ναι», «όχι», «δεν ξέρω» και κάποιος από αυτούς απάντησε σίγουρα «όχι». Το γκαρσόνι κατάλαβε ακριβώς πόσους καφέδες έπρεπε να φέρει μόνο αφού άκουσε και την απάντηση του τελευταίου.
Πόσους καφέδες έφερε και τι απάντησαν οι 6 φίλοι;

Σωστή απάντηση έχουν δώσει οι:
Θανάσης Παπαδημητρίου, sf, stratos, Antonios Seretis, batman1986, swt, Orestis Kopsacheilis, Νίκος Ηλιόπουλος, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, Christina Pebbles, Λαέρτης

Ανάλυσης - Βάρκα και νόμισμα (****)

Στέκεστε στην άκρη μίας πισίνας και παρατηρείτε μια βάρκα να επιπλέει μέσα της. Τι από τα δύο θα αυξήσει περισσότερο τη στάθμη του νερού; αν ρίξετε ένα νόμισμα μέσα στην πισίνα ή αν το ρίξετε μέσα στη βάρκα;

Σωστή απάντηση έχουν δώσει οι:
daskalos1971, theo, stratos, sf, Antonios Seretis, Ευθύμης Αλεξίου, Κ29, Orestis Kopsacheilis, swt, Θανάσης Παπαδημητρίου, batman1986, AgelosX, demistek, Christina Pebbles, Charitakis Ioannis, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, Νίκος Ηλιόπουλος, Png

Παράδοξα - Το δισορθογώνιο τρίγωνο (****)

γρίφος δισορθογώνιο τρίγωνο
  1. Έστω πως έχουμε ένα ευθύγραμμο τμήμα ΑΒ. Στο σημείο Α φέρνουμε μια κάθετη ημιευθεία. Στο σημείο Β, φέρνουμε μια σχεδόν κάθετη ημιευθεία, αλλά με πολύ μικρή κλίση προς τα αριστερά, όπως στο σχήμα. Προφανώς οι δυο ημιευθείες κάπου θα τέμνονται και θα σχηματίζεται ένα τρίγωνο. Το σημείο τομής τους δεν απεικονίζεται στο σχήμα.
  2. Από το σημείο Α, φέρνουμε πάνω στην κάθετη πλευρά, μικρό τμήμα ΑΑ' μήκους x . Το ίδιο κάνουμε και στη σχεδόν κάθετη πλευρά με το τμήμα ΒΒ'.
  3. Φέρνουμε τις μεσοκαθέτους στα μέσα Μ και Μ' των ΑΒ και Α'Β' αντίστοιχα. Αυτές επίσης θα τέμνονται σε ένα σημείο Τ.
  4. Τα τρίγωνα ΑΤΒ και Α'ΤΒ' είναι ισοσκελή εκ κατασκευής και άρα οι γωνίες φ και φ' είναι ίσες.
  5. Τα τρίγωνα Α'ΤΑ και ΒΤΒ' είναι ίσα, καθώς έχουν και τις τρεις πλευρές τους ίσες. Άρα οι γωνίες θ και θ' είναι ίσες.
  6. Όμως φ + θ = 90 μοίρες, άρα και φ' + θ' = 90 μοίρες.
  7. Συνεπώς το αρχικό μας τρίγωνο έχει δύο ορθές γωνίες!
Σε ποιο βήμα βρίσκεται το λάθος της απόδειξης;

Σωστή απάντηση έχουν δώσει οι:
swt, theo, stratos, sf, Νικος, Ευθύμης Αλεξίου, Antonios Seretis, Θανάσης Παπαδημητρίου, nerd, batman1986, ΒΑΣΙΛΗΣ ΛΟΥΚΑΣ, Christina Pebbles,