Γίνε μέλος στο grifoi.org

Στους γρίφους με τη σήμανση ".Άλυτοι 1-100" μπορούν να στέλνουν τις λύσεις τους μόνο τα Μέλη του site grifoi.org. Πληροφορίες για το πως θα γίνετε μέλος μπορείτε να διαβάσετε εδώ.

Πέμπτη, 5 Νοεμβρίου 2009

Υπολογισμού - Καθρεπτιζόμενο ρολόι (***)

Ένας μικρός ξυπνάει το πρωί για να πάει σχολείο. Καθώς έφτιαχνε τη σάκα του κοιτάζει βιαστικά από τον καθρέφτη του δωματίου του ένα ρολόι δεικτών που βρισκόταν στο χωλ και βλέπει μια ώρα που δεν μπορεί να ήταν σωστή, οπότε υπέθεσε λανθασμένα πως το ρολόι ήταν σταματημένο. Ανεβαίνει στο ποδήλατό του και μετά από 20 λεπτά ακριβώς φτάνει στο σχολείο του. Το ρολόι του σχολείο έδειχνε δύο ώρες και τριάντα λεπτά μετά από την ώρα που είδε στον καθρέφτη του σπιτιού του.
Τι ώρα έφτασε στο σχολείο;

1 σχόλιο:

pantsik είπε...

Λύση :

Το ρολόι του σχολείου είχε διαφορά 2:30 - 20' = 2 ώρες και 10 λεπτά από το ρολόι του σπιτιού του.
Επειδή και τα δύο ρολόγια έδειχναν τη σωστή ώρα πρέπει να βρούμε την ώρα εκείνη της οποίας η κατοπτρική της, δηλαδή η συμμετρική της ως προς τον κάθετο άξονα, θα διαφέρει κατά 2 ώρες και 10 λεπτά.
Το μόνο ζευγάρι ωρών που πληροί αυτές τις προϋποθέσεις είναι οι ώρες 4:55 και 7:05.
Τα ζευγάρια 10:55 - 1:05 και 11:25 - 1:35 δεν δίνουν ρεαλιστικές ώρες σχολείου. Το δεύτερο μάλιστα έχει και το πρόβλημα που παρουσιάζεται στη συνέχεια.
Το ζευγάρι 5:25 - 7:35 δεν είναι κατοπτρικό γιατί οι ωροδείκτες δεν βρίσκονται ακριβώς πάνω στο 5 και στο 7, με αποτέλεσμα τα σωστά ζευγάρια να είναι 4:25 - 7:35 ή 5:25 - 6:35 τα οποίο δεν απέχουν μεταξύ τους κατά 2 ώρες και 10 λεπτά.
Έτσι η μόνη ρεαλιστική λύση είναι να έφτασε στο σχολείο στις 7:05 + 20' = 7:25.